

Secure Password Storage

How to store passwords in a database?

Introduction

● Storing login credentials

● Webservice

User Password

John doe securepw1

Trudy 123

● Security risks

● Attacker gets (partial) read access
● Dictionary attacks, Brute-force attacks

Naive Solution

● Choose a cryptographic hash
function

● MD5, SHA1, …
● Password not stored in

plaintext, but hash value

● On login: compute hash and
compare

User Password

John doe a0719618388bf24f0
d89b923df477712

Trudy 202cb962ac59075b
964b07152d234b70

Cryptographic Hash Functions

● hash(m) = h

● „One-way“ mathematical function that is infeasable to invert

● Arbitrary size input
● Fixed size output

● There is no way to prove that a function is not invertible

● Difference „it cannot be broken“ and „nobody
knows how to break it“

Cryptographic Hash Functions

● Properties

● Deterministic
● Given a hash value, it is infeasable to generate

the message (pre-image resistance)
● It is infeasable to find two messages with the

same hash value (collision resistance)
● Given a message, it is infeasable to find a

different message with the same hash value
(second pre-image resistance)

Cryptographic Hash Functions

● Use cases

● Verifying the integrity of messages and files
● Signature generation and verification
● Password verification
● Proof-of-work (deter DOS attacks, crypto-

currency)
● File or data identifier

Attacks on Hashed Passwords

● Preimage attack

● Find a message with a specific hash value
● For an ideal hash function the fastes way to

compute a first or second preimage is through
a brute-force attack

– For n-bit hash => 2n complexity

Attacks on Hashed Passwords

● Birthday attack (collision attack)

● „It is more likely to find two random messages
with the same hash value than the message
for one specific hash value“

● Complexity 2n/2

Bit-length Possible outputs 75% chance of
random collision

16 216 = ~ 6.4 x 104 430

128 2128 = ~ 3.4 x 1038 3.1 x 1019

512 2512 = ~ 1.3 x 10154 1.9 x 1077

Attacks on Hashed Passwords

● Rainbow table

● Precomputed table for reversing cryptographic
hash functions

● Chains of passwords & hashes to reduce space
usage

– Time-space trade-off
– Increasing the length of the chain, decreases the

size of the table, but increases time for lookups

Attacks on Hashed Passwords

● Rainbow table

● Usage of reduction functions to reverse a hash
value back into plaintext (not inverse!)

– Plain
1
 -> Hash

1
 -> Plain

2
 -> Hash

2
 -> ...

– Only store start point and end point
– Calculate chain with given hash value and

compare to endpoints
● Rainbow tables use more than one reduction

function to decrease collisions in hash chains

Salted Hashes

● Assume that there are Rainbow tables, etc. for every standard
hash function

● The attacker has the advantage of parallelism:

● Hash one PW and compare it to a lot of the
stored PWs

● Shares the cost of hashing over several
attacked PWs

Salted Hashes

● Solution: Make the hash function individual for every user

=> Salted Hashes

● Add a unique code to every PW

to break the hash function into

different „families“ of hash functions

● Hash(m + salt) = h

1)

Salted Hashes

● Breaks the parallelism advantage of the attacker

● But! Every user has to have an unique salt or else you could
create Rainbow tables for the salted hash

● If the PW is used on a different platform, it
should have a different salt

● How to generate salts that are as unique as possible?

● Use randomness!

Salt Generation

● Cryptographically Secure Pseudorandom Number Generators

● "Quality" of randomness required varies for
different applications

– Nonce require only uniqueness
– One-time pads require also high entropy

● Uses entropy obtained from a high-quality
source

– Operating system's randomness API
– Timings of hardware interrupts, etc.

2)

Salt Generation

● Universally Unique Identifier (UUID)

● 128 bit number, representation in 32
hexedecimals in 8-4-4-4-12 format

– 123e4567-e89b-12d3-a456-426655440000
● Often used as database keys

– Microsoft SQL Server: NEWID function
– PostgreSQL: UUID datatype + functions
– MySQL: UUID function
– Oracle DB: SYS_GUID function (not quite a

standard GUID, but close enough)

Aside: Pepper

● A salt, but secret!

=> Just like a key

● Only increases security if the attacker has access to the hash,
but not the pepper

● Store pepper on a different "secure" hardware

Aside: „broken“ MD5

● The MD5 Hash-function is considered broken

=> It is "easy" to find collisions
● But password hashing is not concerned about

collisions
– Preimage attacks are important!

● MD5 has other problems in that regard

● One of the fastest cryptographic hash function
to compute

Brute-force attacks

● Recall:

● An ideal hash function has complexity 2n to find
the message of a specific hash value

● But:

● What if these hash values can be computed
really fast?

● Modern hardware can compute millions of
"easy" hash values in mere seconds

Slow hash functions

● Counter faster & faster hardware

● Make deliberate slow algorithms

=> Key Derivation Function (KDF)
– Hash = KDF(pw, salt, workFactor)

● PBKDF2
● bcrypt
● scrypt
● Argon2

● How many iterations?
– As many as possible

PBKDF2

● Password-Based Key Derivation Function 2

● Combines
– A hash-based message authentication code

(HMAC) function
● MD5, SHA1, ...

– Salt
● Iterates a predefined time

– Recommended in 2000: 1000 iterations
– Recommended in 2011: 100000 iterations

bcrypt

● Based on the Blowfish block cipher

● Eksblowfish (expensive key schedule Blowfish)
● Use PW & Salt to generate a set of subkeys
● Iterate:

– Use alternating PW and Salt
– Block encryption with the set of subkeys
– Replace some of the subkeys

Time-space tradeoff

● Specialized hardware is extremely efficient at multi-threading

● Field Programmable Gate Arrays (FPGA)
● GPUs

● But experience difficulties when operating on a large amount of
memory

=> Design memory-hard functions with
exponential memory usage

– scrypt
– Argon2

Outro

● Home-brew vs public standard hash algorithms

● "Security through obscurity" (does not work)
– Code gets reverse engineered
– Algorithm should be secure even if all information

except the PW is known
– Lots of testing on public algorithms

● Still deemed secure even after many years

● Common or short passwords kill every secure hash algorithm

● Recommended: 128 bit (of entropy) ~ 22 chars

How to implement all of that?

● CSPRNG in Java:

● Java.security.SecureRandom
– Seeds automatically
– Uses the secure random function of an installed

security Provider (e.g. SUN)

How to implement all of that?

● CSPRNG in Java:

● Java.security.SecureRandom

How to implement all of that?

● Argon2 in Java

● Original implemented in C
● Two Java Bindings:

– https://github.com/phxql/argon2-jvm
– https://github.com/kosprov/jargon2-api

● Included via Maven

How to implement all of that?

● Maven in Eclipse

● Maven plugin should be pre-installed
– If not: Help -> Install New Software...
– Search for "m2e"

● Convert project into Maven project
– Right Click -> Configure -> Convert to Maven

Project ...
● Add listed dependencies to the project

– Right Click -> Maven -> Add Dependency

How to implement all of that?

● Follow instructions in the chosen repository (E.g. Jargon2)

How to implement all of that?

● Follow instructions in the chosen repository (E.g. Jargon2)

How to implement all of that?

● Follow instructions in the chosen repository (E.g. Jargon2)

How to implement all of that?

● Argon2

● Argon2d:
– data-dependent memory access

● Argon2i:
– data-independent memory access

● Argon2id:
– hybrid of Argon2d & Argon2i

● Notes from the GitHub:

● Argon2i is preferred for password hashing

Regulars' table (Stammtisch)
Knowledge

● Char[] is more secure than String

● Strings are immutable
– There is no way to delete it from memory before

the Garbage Collector kicks in
–

● Allowing ultra long passwords enables DOS attacks

● Passwords can be hashed beforehand to
prevent that (e.g. with SHA-512)

Resources

● https://security.stackexchange.com/questions/211/how-to-
securely-hash-passwords

● https://github.com/p-h-c/phc-winner-argon2

● https://security.stackexchange.com/questions/25585/is-my-
developers-home-brew-password-security-right-or-wrong-and-
why

● https://security.blogoverflow.com/2013/09/about-secure-
password-hashing/

● https://stackoverflow.com/questions/8881291/why-is-char-
preferred-over-string-for-passwords?rq=1

● http://www.vogella.com/tutorials/EclipseMaven/article.html

References

1) https://www.maxim.com/.image/t_share/MTQ0MjczMjg0NDc5O
TE5NDg3/custom-custom_size___what-salt-bae-memejpg.jpg

2) https://encrypted-tbn0.gstatic.com/images?
q=tbn:ANd9GcQUDYA-esllUVeG1j4FJ5EJhZu64qJwWyw-
o9eguWYw8GeG4hkF

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34

