
  

Secure Password Storage

How to store passwords in a database?



  

Introduction

● Storing login credentials

● Webservice

User Password

John doe securepw1

Trudy 123

● Security risks

● Attacker gets (partial) read access
● Dictionary attacks, Brute-force attacks



  

Naive Solution

● Choose a cryptographic hash 
function

● MD5, SHA1, …
● Password not stored in 

plaintext, but hash value

● On login: compute hash and 
compare

User Password

John doe a0719618388bf24f0
d89b923df477712

Trudy 202cb962ac59075b
964b07152d234b70



  

Cryptographic Hash Functions

● hash(m) = h

● „One-way“ mathematical function that is infeasable to invert

● Arbitrary size input
● Fixed size output

● There is no way to prove that a function is not invertible

● Difference „it cannot be broken“ and „nobody 
knows how to break it“



  

Cryptographic Hash Functions

● Properties

● Deterministic
● Given a hash value, it is infeasable to generate 

the message (pre-image resistance)
● It is infeasable to find two messages with the 

same hash value (collision resistance)
● Given a message, it is infeasable to find a 

different message with the same hash value 
(second pre-image resistance)



  

Cryptographic Hash Functions

● Use cases

● Verifying the integrity of messages and files
● Signature generation and verification
● Password verification
● Proof-of-work (deter DOS attacks, crypto-

currency)
● File or data identifier



  

Attacks on Hashed Passwords

● Preimage attack

● Find a message with a specific hash value
● For an ideal hash function the fastes way to 

compute a first or second preimage is through 
a brute-force attack

– For n-bit hash => 2n complexity



  

Attacks on Hashed Passwords

● Birthday attack (collision attack)

● „It is more likely to find two random messages 
with the same hash value than the message 
for one specific hash value“

● Complexity 2n/2

Bit-length Possible outputs 75% chance of 
random collision

16 216 = ~ 6.4 x 104 430

128 2128 = ~ 3.4 x 1038 3.1 x 1019

512 2512 = ~ 1.3 x 10154 1.9 x 1077



  

Attacks on Hashed Passwords

● Rainbow table

● Precomputed table for reversing cryptographic 
hash functions

● Chains of passwords & hashes to reduce space 
usage

– Time-space trade-off
– Increasing the length of the chain, decreases the 

size of the table, but increases time for lookups



  

Attacks on Hashed Passwords

● Rainbow table

● Usage of reduction functions to reverse a hash 
value back into plaintext (not inverse!)

– Plain
1
 -> Hash

1
 -> Plain

2
 -> Hash

2
 -> ...

– Only store start point and end point
– Calculate chain with given hash value and 

compare to endpoints
● Rainbow tables use more than one reduction 

function to decrease collisions in hash chains



  

Salted Hashes

● Assume that there are Rainbow tables, etc. for every standard 
hash function

● The attacker has the advantage of parallelism:

● Hash one PW and compare it to a lot of the 
stored PWs

● Shares the cost of hashing over several 
attacked PWs



  

Salted Hashes

● Solution: Make the hash function individual for every user

=> Salted Hashes 

● Add a unique code to every PW

to break the hash function into

different „families“ of hash functions

● Hash(m + salt) = h

1)



  

Salted Hashes

● Breaks the parallelism advantage of the attacker

● But! Every user has to have an unique salt or else you could 
create Rainbow tables for the salted hash

● If the PW is used on a different platform, it 
should have a different salt

● How to generate salts that are as unique as possible?

● Use randomness!



  

Salt Generation

● Cryptographically Secure Pseudorandom Number Generators

● "Quality" of randomness required varies for 
different applications

– Nonce require only uniqueness
– One-time pads require also high entropy

● Uses entropy obtained from a high-quality 
source

– Operating system's randomness API
– Timings of hardware interrupts, etc.

2)



  

Salt Generation

● Universally Unique Identifier (UUID)

● 128 bit number, representation in 32 
hexedecimals in 8-4-4-4-12 format

– 123e4567-e89b-12d3-a456-426655440000
● Often used as database keys

– Microsoft SQL Server: NEWID function
– PostgreSQL: UUID datatype + functions
– MySQL: UUID function
– Oracle DB: SYS_GUID function (not quite a 

standard GUID, but close enough)



  

Aside: Pepper

● A salt, but secret!

=> Just like a key

● Only increases security if the attacker has access to the hash, 
but not the pepper

● Store pepper on a different "secure" hardware



  

Aside: „broken“ MD5

● The MD5 Hash-function is considered broken

=> It is "easy" to find collisions
● But password hashing is not concerned about 

collisions
– Preimage attacks are important!

● MD5 has other problems in that regard

● One of the fastest cryptographic hash function 
to compute



  

Brute-force attacks

● Recall:

● An ideal hash function has complexity 2n to find 
the message of a specific hash value

● But:

● What if these hash values can be computed 
really fast?

● Modern hardware can compute millions of 
"easy" hash values in mere seconds



  

Slow hash functions

● Counter faster & faster hardware

● Make deliberate slow algorithms

=> Key Derivation Function (KDF)
– Hash = KDF(pw, salt, workFactor)

● PBKDF2
● bcrypt
● scrypt
● Argon2

● How many iterations?
– As many as possible



  

PBKDF2

● Password-Based Key Derivation Function 2

● Combines
– A hash-based message authentication code 

(HMAC) function
● MD5, SHA1, ...

– Salt
● Iterates a predefined time

– Recommended in 2000: 1000 iterations
– Recommended in 2011:  100000 iterations



  

bcrypt

● Based on the Blowfish block cipher

● Eksblowfish (expensive key schedule Blowfish)
● Use PW & Salt to generate a set of subkeys
● Iterate:

– Use alternating PW and Salt
– Block encryption with the set of subkeys
– Replace some of the subkeys



  

Time-space tradeoff

● Specialized hardware is extremely efficient at multi-threading

● Field Programmable Gate Arrays (FPGA)
● GPUs

● But experience difficulties when operating on a large amount of 
memory

=> Design memory-hard functions with  
exponential memory usage

– scrypt
– Argon2



  

Outro

● Home-brew vs public standard hash algorithms

● "Security through obscurity" (does not work)
– Code gets reverse engineered
– Algorithm should be secure even if all information 

except the PW is known
– Lots of testing on public algorithms

● Still deemed secure even after many years

● Common or short passwords kill every secure hash algorithm

● Recommended: 128 bit (of entropy) ~ 22 chars



  

How to implement all of that?

● CSPRNG in Java:

● Java.security.SecureRandom
– Seeds automatically
– Uses the secure random function of an installed 

security Provider (e.g. SUN)



  

How to implement all of that?

● CSPRNG in Java:

● Java.security.SecureRandom



  

How to implement all of that?

● Argon2 in Java

● Original implemented in C
● Two Java Bindings:

– https://github.com/phxql/argon2-jvm
– https://github.com/kosprov/jargon2-api

● Included via Maven



  

How to implement all of that?

● Maven in Eclipse

● Maven plugin should be pre-installed
– If not: Help -> Install New Software...
– Search for "m2e"

● Convert project into Maven project
– Right Click -> Configure -> Convert to Maven 

Project ...
● Add listed dependencies to the project

– Right Click -> Maven -> Add Dependency



  

How to implement all of that?

● Follow instructions in the chosen repository (E.g. Jargon2)



  

How to implement all of that?

● Follow instructions in the chosen repository (E.g. Jargon2)



  

How to implement all of that?

● Follow instructions in the chosen repository (E.g. Jargon2)



  

How to implement all of that?

● Argon2

● Argon2d: 
– data-dependent memory access

● Argon2i: 
– data-independent memory access

● Argon2id: 
– hybrid of Argon2d & Argon2i

● Notes from the GitHub:

● Argon2i is preferred for password hashing



  

Regulars' table (Stammtisch) 
Knowledge

● Char[] is more secure than String

● Strings are immutable
– There is no way to delete it from memory before 

the Garbage Collector kicks in
–

● Allowing ultra long passwords enables DOS attacks

● Passwords can be hashed beforehand to 
prevent that (e.g. with SHA-512)



  

Resources

● https://security.stackexchange.com/questions/211/how-to-
securely-hash-passwords

● https://github.com/p-h-c/phc-winner-argon2

● https://security.stackexchange.com/questions/25585/is-my-
developers-home-brew-password-security-right-or-wrong-and-
why

● https://security.blogoverflow.com/2013/09/about-secure-
password-hashing/

● https://stackoverflow.com/questions/8881291/why-is-char-
preferred-over-string-for-passwords?rq=1

● http://www.vogella.com/tutorials/EclipseMaven/article.html
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